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Abstract: Let f (s) := 2" as be amonic polynomial (i.e., a = 1) and let F(S) :=f (S —a) =2 bS, B
# 0. If the g’s are the nroots of f (s) then the § = (s, + o)B’s are the n roots of F(S). i.e., we obtain the
roots of F(S) by shifting the roots of f (s) by a. and then multiplying them by B. Let P(c., B) denote the
upper triangular (n + 1)-square matrix that transforms the coefficients of f (s) to the coefficients of F(S),
let P(a) := P(a, 1), and let P := P(-1). We call the upper triangular matrix P Pascal’s matrix since its

nonzero elements coincide with Pascal’s triangle. We will show the following results.

(i) 1fp=21andf (s isHurwitz (i.e, stable Ns <0, k=1,..,n)anda =a_,/n, then F(S) becomes a
depressed polynomial (i.e.,, b, = 0) and hence unstable. We will show that c,:=a_/nisan upper
bound on f (s) s stability margln say o. The gpplication of the proposed upper bound is to narrow

the search region of f (s)'s stability margin from (0, «) to (0, ).

(if) Waring's formulas that appear in probability state that P = P(1). By shifting the roots of f (s) by o
and then shifting the roots of F(S) by —a we arrive back at f (s). Hence, we obtain that P(—o))P(c) =
I, where | denotes the (n +1)-square identity matrix and hence P*(a) = P(-a) thus generalizing
Waring's formulas. Similarly, we will derive other matrix identities where multiplication is
commutative. We will aso show that the set of matrices {P(a)) . a € R} form a multiplicative

abelian group with identity matrix P(0).

(iii) We obtained amore general formula by first substituting in f (s), s= B — a and then substituting in
F(S), S=B(s+ o) thus arriving back at f (s). Hence, P(a., B) = P(—af, B™). We will dso show that
P(a, B) = D(B)P(a), where D(B) is a diagona matrix and D (B) = p~, i = 0, 1, ..., n. Therefore,

P*(o, B) = P(a)"D™(B) = P(-0)D(B™).

(iv) Fnally, we will extend the results to multivariable polynomials.

Index Terms: Hurwitz polynomial, Depressed polynomial, Stability margin, Waring's formulas,

Multiplicative abelian group, Kronecker product.
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I. Introduction

If f (s) is themonic characteristic polynomial of a stable linear continuous system then f (s)
iscalled Hurwitz. Let s, k=1, ..., ndenotetheroots of f (s) =a ' +a_,s™'+... +as+a,

a =1 Then, f(s) =11 (s—s) isHurwitz iff
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NRs <0, k=1,..,n D

The Routh-Hurwitz test detects whether or not a polynomial is Hurwitz, see (Dorf and

Bishop, 2005, Chapter 6). Assuming that f (s) is Hurwitz, for system design purposes we
wish to find its stability margin, i.e.,

G = min(-Rs, ..., —Ns). 2
We can compute ¢ as follows
c=minfa:oa>0,FS :=f(S-a), F(S isnot Hurwitz} (3)

In Section I1 we will show that a simple upper bound on c, say o, coincides with o, =
a_,/nfor which F(S) = f (S— o)) becomes a depressed polynomial. F(S) is called a depressed
polynomial if the coefficient b_, of S is zero. Notice that depressed polynomials appear
as an intermediate step in the derivation of explicit expressions for the roots of polynomials
of degree 2-4. We will also comment on finding lower bounds on c, say o,. Initialy, the
article ended after Section I1. However, when studying the transformation matrix P(a) that
transforms the coefficients of f (s) to the coefficients of f(S — o)) Pascal’s matrix, P, that
appeared many times in (Hertz, 2021) and (Hertz, 2022) reappeared here, thus leading to
the additional results in Sections Il and IV.

In Section 111 wewill deriveexplicit expressionsfor P(o, B) anditsinverse In particular,
when § = 1 we immediately obtain that P(a)P(—a) = | which we call the generalized
Waring's formulas. Waring's formulas, P = P(1), correspond to oo = 1 and appear in
probability theory, see (Grimmet and Stirzaker, 2001), (Hertz, 2021), and (Hertz, 2022). In
(Hertz, 2021) and (Hertz, 2022). Pascal’s matrix, P := P(-1), appeared in many resultsand
also in another more intuitive proof of Waring's formulas. The proof here of the generalized
Waring's formulasis simpler than thelatter two proofs and also extends Waring’s formulas.
Wewill also show that thematricesin{P(a) : o € R} are commutativeunder multiplication
and form a multiplicative abelian group with identity matrix P(0). In the general case by
first substituting in f (s), s= 9B —a and then substituting in F(S), S= B(s+ a) we arrive
back at f (s). Hence, we obtain that P*(a., B) = P(—aB, ™). We will also show that P(c, )
= D(a)P(a), where D(a) is a diagonal matrix and D (B) = p~, i =0, 1, ..., n. Therefore,
P*(a, B) = P (o)D*(B) = P(—o)D(B). Notice that multiplication of matrices P(a.,, B,), B,
# 1,1 =1, 2isnot necessarily commutative. In Section IV we extend the results of Section
Il to multivariable polynomials. Finally, in Section V we give the conclusion.

1. Bounds on the Stability Margin of Hurwitz Polynomials

Let 6, > 0 denote a lower bound on the stability margin of the Hurwitz polynomial f (s). If
f () turns out to be stable, e.g., by using the Routh Hurwitz test (Dorf and Bishop, 2005)
thenc, > 0. If for somea,, > 0, f (S—a) turns out to be Hurwitz then o, = a,.

Let s=x+iy, (X, y) € R2 If by using thetest in (Zeheb and Hertz, 1982) f (s) turns out
to be stable with respect to the left branch of the hyperbola x?/a? — y?/b? = 1, then obviously
c, = a. Specifically, if by applying the Routh-Hurwitz test to the polynomial
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s an.laZ+2bz-a
0(2=(z+) f[ 21 j (4)
we obtain that if g(2) is Hurwitz then f(s) is stable with respect to the left branch of the
abovehyperbolaand o, = a. If f(s) isHurwitz (i.e,, ®s <0,k=1,...,njanda=a_,/n, then
F(S = f(S— o) becomes a depressed polynomial (i.e., b,_, = 0 and hence unstable). We will
show that 6 := a_,/nisan upper bound of f(s)’s stability margin, say . The application of
the proposed upper bound is to narrow the search region of f(s)'s stability margin from (s,
©)to(c, o).
By using Vieta's formula F(S) becomes a depressed polynomial if
b,=—S§+..+9)
={(s;+a)+..+ (s + )
=a ,—na=0. (5)
Let o, ;= a_,=n bethe o that renders F(S) a depressed polynomial. It is well known
thata >0,i =0, ..., nisanecessary condition for f(s) to be Hurwitz (this result can be
easily obtained by using f(s) = I1"_(s—s) and s < 0 Vi). Notice that for n < 2 thisisalso
asufficient condition. Hence, since F(S) = f(S—a,)) is a depressed polynomial, F(S) cannot
be Hurwitz and therefore o < 6, ;= a_,/n. So instead of (3) we have
c=minfa:c,<a<oc, FS :=f(S-a)isnot Hurwitz}. (6)
Remark 2.1. Noticethat when Rs = —c, i =1, ..., n, 5, corresponding to the depressed
polynomial f(S— o) becomes the stability margin of f(s).

[11. Properties of the Transformation Matrices P(a, p) and A Generalization of
Waring's Formulas

Leta:=(a, a, ..., a)" denote the coefficients of f (s) and b : = (b,, b,, ..., b )" denote the
coefficients of F(S) :=f (9B — o). Then,

F(9 = 2a(S/p-) ©

=Za2('kj P (-0)

i=0

-3 ai(LJSKBk(—a)”, since (Ik]=0 for k> i

=0 k=0

n

_ Skakiaj (Ik](_a)ik

k=0
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L kn—k L I i-k
=2 S a(k](—a)
But
F(S =§bksk (8)
Hence,
b, =B’an:a (ij ()", k=0,1..,n (9)
Therefore,
b = P(a, B)a=D(B)P(a)a, (10
where D(B) is the diagonal matrix
D(B) := diag(B® B, ..., B™) (11)
and
o) «lo) =) o) = «(o
o o o — o o
0 0 0 0 0
) ) o
0 a o a o
1 1 1 1
6 2) m 2N
0 0 a a e O
P(-a) = (2 2 2 (12)
0 0 0 o’ (BJ A "
3 3
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Let
0) (1 2) (3 n
o) (0) (0) (O 0
1 2 3 n
0
1) 1 1 1
2 3 n
0O O
P=P(-1= 2 2 2
3 n
0O O 0 3 3 (13)
n
O 0O 0 ©O
n
and
a ot a? o a"
0 aO (x—l a—Z al—n
0 -1 2-n
A(-a)= 0 0 a oco ocs
0O 0 0 «a a”" (14)
0O 0 0 © o’
Then,
P(o) = A(a) x P=P x A(), (15
where x denotes the Hadamard product. Since P*(a) = P(—ot) we obtain
P(o) = A(—o) x P. (16)
Next, suppose that
ci=) o (17)
i=1
Then,
c=) m(a), (18)
i=1

where t denotes any permutation of {1, ..., m}. Hence,
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P =] ,Pe) =TT ,P(c)). (19)

Notice that the set of matrices{ P(a), o € R} form a multiplicative abeian group with
inverse P(a) = P(—a) and identity matrix P(0).

IV. Properties of the Transformation Matrices Associated with Multivariable
Polynomials

This Section is based on the works in (Rao and Aatre, 1976) and (Hertz and Zeheb, 1987).
The transformation
u:=v/pB-o,B=0i=1..,m (20)
of a multi-variable polynomial
f(u):=f(u,..,u) (22)
is useful in various engineering applications, e.g., design and stability tests of
multidimensional filters. We define the transformed polynomial by

F(v) =f(v,/B,—a,, ...V B, —). (22

Let N, denotes the highest degree of u. in f (u) which also turns out to be the highest
degree of v in F(v). Following the notation in (Rao and Aatre, 1976), let a denote the
vector of coefficients of f (u) arranged in such a way that the coefficient of the monomial

mhu®, (0<y, <N,i=1,.., m) isthek'th component of a, where
k= (N, =7,)(N, + 1) = (N, + 1)+ (23
(N, =1)(N; + 1) - (N, + 1) + -+ (N =y ) + L
A similar notation holds for the vector b of the coefficients of F(v). Evidently, the

number of coefficients of a (and also of b ) including those with zero valueis N := IT" (N.
+ 1). Finally, the relation between b and a

b:=Ma (24)
defines the transformation matrix N of order N x N. The multlivariable transformation
matrix M as constructed above can besimilarly obtained asin (Rao and Aatre, 1976) , i.e.,

M =Pi(0,,) @ ®P (0t By), (25)
where ® denotes the Kronecker product and ﬁi(ai,ﬁi), denotes the (N, + 1)-square
transformation matrix that transforms the vector |5:=(pNi, P, 15 00 p,)" corresponding to

f(u) = =¥, puin the variable u; to the vector q:=(q,, ,q ;... ;)" corresponding to

e
F.(v) = f(v,/B, — o) = Z}¥ qV¥in the variable v.. For a comprehensive treatment of the
Kronecker product see (Marcus 1993).

When m= 1 thevector &= (aNl, ao)T can be obtai ned from the vector of coefficients

a=(a, .. aNl)T by flipping its elements. i.e., & = J,a, where J, denotes the (N, + 1)-
permutation matrix whose secondary diagonal elements are al ones. Since JZ =1, J, is
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involutory and J;* = J,. Involutory matrices are defined as the square roots of the identity
matrix and J, is one of them.
Hence, for m=1and a = J, awe obtain

b=Jb (26)
= J,[P,(a, B)a]
=J,P(a, B)JJa
=[J,P(a, B)J,]a.
Therefore,
Pa(0t,B) = J,Py(ct, B)J.. (27)
Similarly, asin the previous section welet P;(a) = Pi(a,1) and P; = P;(-1) . Notice
that Pascal’s triangle appearsin P; in its lower right corner.
Using therelationship (A,®B,)(A,®B,) = (A,A,)®(B,B,) wherewe assumethat A A,
and BB, exist we obtain (Marcus 1993)

M = Pi(oy, By) ®- - ® Prm(0ty, By) (28)

= [lel(a]_’ B:L)Jl] ®® [Jum(am’ Bm)‘]m]
=J®[P(a, B,) ®..0 P (o, B,)] ®J,

where
J=J,®.8®J, (29)
istheN :=IT_ (N, + 1) square involutory matrix similar to the J.’s.
Now, let
M=P(a,B,) ®.OP (o, B,) (30)
Then,
Jb = IMa (31)
=JIMJa
=MJa.
Hence, if welet a:= Ja and b := Jb betheflipped versions of & and b we obtain
b=Ma (32
Next, by using therelationship (A ® B)?* = A ® B! we obtain (Marcus 1993)
M*=P*a,B)® - ®PHa,B,) (33)

= Pl(_alBl’ Bl) Q- ® IDm(_OLm®m’ Br_nl)
=[P, (~0)D,(B] ® -+ ® [P (=0, )D,(B)]
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When. =1, 0, = Zf;lo‘i,j (i=1,..,m),andr (i =1, .., m arearbitrary permutations of
{1, ..., £} wehave

M=P(a)® - ®P (o) (34)

= [H?:lpl(al,nl(j) )] ®--® |:H/j:lpm (am’nm(j) )]

=H/J::1[Pl(oclvnl(j)) ®--®P, (o, )]

Hence, the set of matrices defined in (34), i.e.,, {M(a,, ..., o) : (o, ..., o0 ) € R™) is
commutative with respect to multiplication with an additional inner leve of commutativity

and form a multiplicative abelian group with identity matrix | = M (0, ..., 0).
H_J

m

V. Conclusion

In this article we presented a simple upper bound on the stability margin of a given a
Hurwitz polynomial, say f (s) := X' as. The proposed upper bound is o, := a_,/n, where
a_, isf(s)'s coefficient of s™. This upper bound coincides with the a. that renders F(S) =
f(S— o) a depressed polynomial, i.e., where the coefficient of S becomes zero. This
bound can be used to narrow the search region for the stability margin o of f (s) from (s,
©) to (c,, 6), where s, > O isan initial lower bound on the stability margin.

Next, we showed that the matrix P(a, B) that transforms the coefficients of f (s) to the
coefficients of F(S) :=f (9B — o), B # O satisfies P(a, B) = P(—ap, ). We defined P(ar)
= P(a, 1), and P := P(-1) and called the upper triangular matrix P Pascal’s matrix because
its nonzero dements coincide with Pascal’s triangle. We have shown the following results.
By shifting the roots of f (s) by o and then shifting the roots of F(S) by —o we arrive back
at f (s). Hence, we obtain that P(—a)P(ct) = I, where | denotes the (n + 1)-sgquare identity
matrix and consegquently P*(a) = P(—a) thus generalizing Waring's formulas, i.e., P =
P(1). Similarly, we derived other matrix identities where multiplication is commutative.
We could thus show that the set of matrices { P(a) : o € R} form a multiplicative abelian
group with identity matrix P(0). We have also shown that P(a., ) = D(B)P(a), where D(j3)
is a diagonal matrix whose dementsare D (B) = p~, i =0, 1, ..., n. Therefore, P*(a, ) =
P(a)* D(B) = P(—o)D(B2). Finally, we extended the above results to multivariable
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polynomials with similar conclusions and with richer structure. Further research will focus
on finding other operations on polynomials that can be translated to matrix operations and
eventually to fast algorithms. For some more examples of this line of research refer to
(Hertz, 1991), (Hertz, 2021), and (Hertz, 2022).
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