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Abstract: Let f (s) := �n
i=0

 a
i
si be a monic polynomial (i.e., a

n
 = 1) and let F(S) := f (S/��– �) = �n

i=0
 b

i
Si, �

�  0. If the s
k
’s are the n roots of f (s) then the S

k
 = (s

k
 + �)�’s are the n roots of F(S). i.e., we obtain the

roots of F(S) by shifting the roots of f (s) by � and then multiplying them by �. Let P(�, �) denote the
upper triangular (n + 1)-square matrix that transforms the coefficients of f (s) to the coefficients of F(S),
let P(�) := P(�, 1), and let P := P(–1). We call the upper triangular matrix P Pascal’s matrix since its
nonzero elements coincide with Pascal’s triangle. We will show the following results.
(i) If � = 1 and f (s) is Hurwitz (i.e., stable  �s

k
 < 0, k = 1, ..., n) and � = a

n–1
/n, then F(S) becomes a

depressed polynomial (i.e., b
n–1

 = 0) and hence unstable. We will show that �
u
 := a

n–1
/n is an upper

bound on f (s)’s stability margin, say �. The application of the proposed upper bound is to narrow
the search region of f (s)’s stability margin from (0, �) to (0, �

u
).

(ii) Waring’s formulas that appear in probability state that P–1 = P(1). By shifting the roots of f (s) by �
and then shifting the roots of F(S) by –� we arrive back at f (s). Hence, we obtain that P(–�)P(�) =
I, where I denotes the (n +1)-square identity matrix and hence P–1(�) = P(–�) thus generalizing
Waring’s formulas. Similarly, we will derive other matrix identities where multiplication is
commutative. We will also show that the set of matrices {P(�) . ��� �} form a multiplicative
abelian group with identity matrix P(0).

(iii) We obtained a more general formula by first substituting in f (s), s = S/��– � and then substituting in
F(S), S = �(s + �) thus arriving back at f (s). Hence, P–1(�, �) = P(–�� , �–1). We will also show that
P(�, �) = D(�)P(�), where D(�) is a diagonal matrix and D

ii
(�) =��–i, i = 0, 1, ..., n. Therefore,

P–1(�, �) = P(�)–1D–1(�) = P(–�)D(�–1).
(iv) Finally, we will extend the results to multivariable polynomials.
Index Terms: Hurwitz polynomial, Depressed polynomial, Stability margin, Waring’s formulas,
Multiplicative abelian group, Kronecker product.

To cite this article

David Hertz (2022). Applications of the Polynomial Pair f(s) and f(S/�–�) to Control, Probability, and Matrix
Analysis. Journal of Statistics and Computer Science. Vol. 1, No. 1, pp. 79-87. https://DOI: 10.47509 /
JSCS.2022.v01i01.04

I. Introduction

If f (s) is the monic characteristic polynomial of a stable linear continuous system then f (s)
is called Hurwitz. Let s

k
, k = 1, ..., n denote the roots of f (s) = a

n
sn + a

n–1s
n–1 + ... + a1s + a0,

a
n
 = 1. Then, f (s) = �n

k=1(s – s
k
) is Hurwitz iff
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�s
k
 < 0, k = 1, ..., n. (1)

The Routh-Hurwitz test detects whether or not a polynomial is Hurwitz, see (Dorf and
Bishop, 2005, Chapter 6). Assuming that f (s) is Hurwitz, for system design purposes we
wish to find its stability margin, i.e.,

� := min(–�s1, ..., –�s
n
). (2)

We can compute � as follows

��= min{� : � > 0, F(S) := f (S – �), F(S) is not Hurwitz} (3)
In Section II we will show that a simple upper bound on �, say �

u
, coincides with � =

a
n–1/n for which F(S) = f (S – �) becomes a depressed polynomial. F(S) is called a depressed

polynomial if the coefficient b
n–1 of Sn–1 is zero. Notice that depressed polynomials appear

as an intermediate step in the derivation of explicit expressions for the roots of polynomials
of degree 2-4. We will also comment on finding lower bounds on �, say �

�
. Initially, the

article ended after Section II. However, when studying the transformation matrix P(�) that
transforms the coefficients of f (s) to the coefficients of f(S – �) Pascal’s matrix, P, that
appeared many times in (Hertz, 2021) and (Hertz, 2022) reappeared here, thus leading to
the additional results in Sections III and IV.

In Section III we will derive explicit expressions for P(�, �) and its inverse. In particular,
when ��= 1 we immediately obtain that P(�)P(–�) = I which we call the generalized
Waring’s formulas. Waring’s formulas, P–1 = P(1), correspond to � = 1 and appear in
probability theory, see (Grimmet and Stirzaker, 2001), (Hertz, 2021), and (Hertz, 2022). In
(Hertz, 2021) and (Hertz, 2022). Pascal’s matrix, P := P(–1), appeared in many results and
also in another more intuitive proof of Waring’s formulas. The proof here of the generalized
Waring’s formulas is simpler than the latter two proofs and also extends Waring’s formulas.
We will also show that the matrices in {P(�) : ��� �} are commutative under multiplication
and form a multiplicative abelian group with identity matrix P(0). In the general case by
first substituting in f (s), s = S/� –��  and then substituting in F(S), S = �(s + �) we arrive
back at f (s). Hence, we obtain that P–1(�, �) = P(–��, �–1). We will also show that P(�, �)
= D(�)P(�), where D(�) is a diagonal matrix and D

ii
(�) = �–i, i = 0, 1, ..., n. Therefore,

P–1(�, �) = P–1(�)D–1(�) = P(–�)D(�–1). Notice that multiplication of matrices P(�
i
, �

i
), �i

� 1, i  = 1, 2 is not necessarily commutative. In Section IV we extend the results of Section
III to multivariable polynomials. Finally, in Section V we give the conclusion.

II. Bounds on the Stability Margin of Hurwitz Polynomials

Let �
�
 > 0 denote a lower bound on the stability margin of the Hurwitz polynomial f (s). If

f (s) turns out to be stable, e.g., by using the Routh Hurwitz test (Dorf and Bishop, 2005)
then �

�
 > 0. If for some �0 > 0, f (S – �0) turns out to be Hurwitz then �

�
 = �0.

Let s = x + iy, (x, y) � �2. If by using the test in (Zeheb and Hertz, 1982) f (s) turns out
to be stable with respect to the left branch of the hyperbola x2/a2 – y2/b2 = 1, then obviously
�
�
 = a. Specifically, if by applying the Routh-Hurwitz test to the polynomial
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2
2

2

2
( ) : ( 1)

1
n az bz a

g z z f
z

� �� �
� � � �

�� �
(4)

we obtain that if g(z) is Hurwitz then f(s) is stable with respect to the left branch of the
above hyperbola and �

�
 = a. If f(s) is Hurwitz (i.e., �s

k
 < 0, k = 1, ..., n) and � = a

n–1/n, then
F(S) = f(S – �) becomes a depressed polynomial (i.e., b

n–1 = 0 and hence unstable). We will
show that �u := a

n–1/n is an upper bound of f(s)’s stability margin, say �. The application of
the proposed upper bound is to narrow the search region of f(s)’s stability margin from (�

�
,

�) to (�
�
, �

u
).

By using Vieta’s formula F(S) becomes a depressed polynomial if

b
n–1 = –(S1 + ... + S

n
)

= –((s1 + �) + ... + (s
n
 + �))

= a
n–1 – n� = 0. (5)

Let �
d
 := a

n–1=n be the � that renders F(S) a depressed polynomial. It is well known
that a

i
 > 0, i = 0, ..., n is a necessary condition for f(s) to be Hurwitz (this result can be

easily obtained by using f(s) = �n
i=1(s – s

i
) and �s

i
 < 0 �i). Notice that for n � 2 this is also

a sufficient condition. Hence, since F(S) = f(S – �
d
) is a depressed polynomial, F(S) cannot

be Hurwitz and therefore � < �
u
 := a

n–1/n. So instead of (3) we have

��= min{� : �
�
 < � < �

u
, F(S) := f(S – �) is not Hurwitz}. (6)

Remark 2.1. Notice that when �s
i
 = –�, i = 1, ..., n, �

u
 corresponding to the depressed

polynomial f(S – �
u
) becomes the stability margin of f(s).

III. Properties of the Transformation Matrices P( , ) and A Generalization of
Waring’s Formulas

Let a := (a0, a1, ..., an
)T denote the coefficients of f (s) and b : = (b0, b1, ..., bn

)T denote the
coefficients of F(S) := f (S/��–��). Then,

F(S)
0

( / )
n

i
i

i

a S
�

� � � �� (7)

0 0

( )
n i

k k i k
i

i k

i
a S

k
� �

� �

� �
� � ��� �

� �
� �

0 0

( ) ,
n n

k k i k
i

i k

i
a S

k
� �

� �

� �
� � ��� �

� �
� �  since 0

i

k

� �
�� �

� �
 for k > i

0 0

( )
n n

k k i k
i

k i

i
S a

k
� �

� �

� �
� � ��� �

� �
� �
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0

( )
n n

k k i k
i

k i k

i
S a

k
� �

� �

� �
� � ��� �

� �
� �

But

F(S)
0

.
n

k
k

k

b S
�

�� (8)

Hence,

b
k

1( ) , 0,1, ..., .
n

k k
i

i k

i
a k n

k
� �

�

� �
� � �� �� �

� �
� (9)

Therefore,

b = P(�, �)a = D(�)P(�)a, (10)

where D(�) is the diagonal matrix

D(�) := diag(�0, �–1, ..., �–n) (11)

and

0 1 2 3

0 1 2 1

0 1 2

0 3

0

0 1 32

0 0 0 00

1 2 3
0

1 1 1 1

2 3
0 0

( ) 2 2 2

3
0 0 0

3 3

0 0 0 0

� � � �

� �

� �

�

� � � � � � � � �� �� � � � �� � �� � � � � � � �� �� � � � � � � ��
� � � � � � � � �� � � � �� � � � � � � �� � � � � � � � �
�

� � � � � �� � � �� � � � � ���� � � � � � � ��
� � � �

� �� � � �
� � � �

� �
� � �
� ��

�

�

�

�

� � � � � �

�

n

n

n

n

n

n

n

n

n

n

P .

�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �� �

�

(12)
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Let

0 1 2 3

0 0 0 0 0

1 2 3
0

1 1 1 1

2 3
0 0

: ( 1) 2 2 2

3
0 0 0

3 3

0 0 0 0

� �� � � � � � � � � �
� �� � � � � � � � � �
� � � � � � � � � �� �
� �� � � � � � � �� �� � � � � � � �� �� � � � � � � �
� �

� � � � � �� �
� � � � � �� �� � � � � � � � �� �

� �� � � �
� �� � � �

� � � �� �
� �
� �

� �� �
� �� �� �� �� �

�

�

�

�

� � � � � �

�

n

n

n

n

n

n

P P

(13)

and

0 1 2 3

0 1 2 1

0 1 2

0 3

0

0

0 0
( ) : .

0 0 0

0 0 0 0

� � � �

� � �

� �

�

� �� � � � �
� �

� � � �� �
� �� � �

�� � � �
� �� �

� �
� �� ��� �

�

�

�

�

� � � � � �

�

n

n

n

n
A

(14)

Then,

P(�) = A(�) � P = P � A(�), (15)
where � denotes the Hadamard product. Since P–1(�) = P(–�) we obtain

P–1(�) = A(–�) � P. (16)
Next, suppose that

1

: .
m

i
i

c
�

� �� (17)

Then,

1

( ),
m

i
i

c
�

� � �� (18)

where � denotes any permutation of {1, ..., m}. Hence,
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1 1
( ) ( ) ( ( )).

� �
� � � � �� �m m

i ii i
cP P P (19)

Notice that the set of matrices { P(�), ��� �} form a multiplicative abelian group with
inverse P–1(�) = P(–�) and identity matrix P(0).

IV. Properties of the Transformation Matrices Associated with Multivariable
Polynomials

This Section is based on the works in (Rao and Aatre, 1976) and (Hertz and Zeheb, 1987).
The transformation

u
i
 := v

i 
/�

i
 – �

i
, �

i
 � 0, i = 1, ..., m (20)

of a multi-variable polynomial

f (u) := f (u1, ..., um
) (21)

is useful in various engineering applications, e.g. , design and stability tests of
multidimensional filters. We define the transformed polynomial by

F(v) := f(v1/�1 – �1, ..., vm 
/�

m
 – �

m
). (22)

Let N
i
 denotes the highest degree of u

i
 in f (u) which also turns out to be the highest

degree of v
i
 in F(v). Following the notation in (Rao and Aatre, 1976), let �a  denote the

vector of coefficients of f (u) arranged in such a way that the coefficient of the monomial

1
im

i iu�
�� , (0 ���

i
 � N

i
, i = 1, ..., m) is the k’th component of �a , where

k = (N1 – �1)(N2 + 1)�����(N
m
 + 1)+ (23)

= (N2 – �2)(N3 + 1) ��� (N
m
 + 1) + ��� + (N

m
 – �

m
) + 1.

A similar notation holds for the vector �b of the coefficients of F(v). Evidently, the
number of coefficients of �a  (and also of �b ) including those with zero value is N := �m

i=1(Ni

+ 1). Finally, the relation between �b  and �a

� :� �� ab M (24)

defines the transformation matrix �M  of order N × N. The multlivariable transformation
matrix �M  as constructed above can be similarly obtained as in (Rao and Aatre, 1976) , i.e.,

� �
1 1 1( , ) ( , ),� � � � � � �� � m m mM P P (25)

where � denotes the Kronecker product and � ( , ),� �i i iP  denotes the (N
i
 + 1)-square

transformation matrix that transforms the vector � 1 0: ( , , ..., )��
i i

T
N Np p pp  corresponding to

f
i
(u

i
) = �Ni

k=0 pk
u

i
k in the variable u

i
 to the vector �

1 0: ( , , ..., )��
i i

T
N Nq q qq  corresponding to

F
i
(v

i
) = f

i
(v

i 
/�

i
 – �

i
) = �Ni

k=0 qk
v

i
k in the variable v

i
. For a comprehensive treatment of the

Kronecker product see (Marcus 1993).

When m = 1 the vector 
1 0( , ..., )�� T

Na aa  can be obtained from the vector of coefficients

a = (a0, ..., aN1
)T by flipping its elements. i.e., �a  = J1a, where J1 denotes the (N1 + 1)-

permutation matrix whose secondary diagonal elements are all ones. Since J1
2 = I, J1 is
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involutory and J1
–1 = J1. Involutory matrices are defined as the square roots of the identity

matrix and J1 is one of them.
Hence, for m = 1 and �a  = J1a we obtain

�b = J1b (26)

= J1[P1(�, �)a]

= J1P1(�, �)J1J1a

= [J1P1(�, �)J1] �a .
Therefore,

�
1( , )� �P = J1P1(�, �)J1. (27)

Similarly, as in the previous section we let � �( ) : ( ,1)� � �i iP P  and � �: ( 1)� �i iP P . Notice

that Pascal’s triangle appears in � iP  in its lower right corner..
Using the relationship (A1�B1)(A2�B2) = (A1A2)�(B1B2) where we assume that A1A2

and B1B2 exist we obtain (Marcus 1993)

�M = � �
1 1 1( , ) ( , )� � � � � �� m m mP P (28)

= [J1P1(�1, �1)J1]���� [J
m
P

m
(�

m
, �m)J

m
]

= J � [P1(�1, �1) ��� P
m
(�

m
, �m)] � J,

where

J := J1 ��� J
m

(29)
is the N := �n

i=1(Ni
 + 1) square involutory matrix similar to the J

i
’s.

Now, let

M = P1(�1, �1) ��� P
m
(�m, �

m
). (30)

Then,

�Jb = � �JMa (31)

= JJMJ �a

= MJ �a .
Hence, if we let a := J �a  and b := J �b  be the flipped versions of �a  and �b  we obtain

b = Ma. (32)

Next, by using the relationship (A � B)–1 = A–1 � B–1 we obtain (Marcus 1993)

M–1 = P1
–1(�1, �1) ��� � � �� P

m
–1(�

m
, �

m
) (33)

= P1(–�1�1, �1) ��� � � �� P
m
(–�

m
�

m
, �

m
–1)

= [P1(–�1)D1(�1
–1)] ���� � �� [P

m
(–�

m
)D

m
(�

m
–1)]
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When �i = 1, �i = ��
j=1�i,j (i = 1, ..., m), and �

i
(i = 1, ..., m) are arbitrary permutations of

{1, ..., �} we have

M = P1(�1)���� � � ���Pm
(�

m
) (34)

1 1, ,
1 1� �

� � � �
� � � � �� � � �

� � � �
� �
� �

� m mj j
j j

P P

11 1 , ( ), ( )
1 1

��
� �

� � � �
� � � � �� � � �

� � � �
� �
� �

�
mm m jj

j j

P P

11 1 1, ( ) 1 , ( )( ) ( )� � � �� � � �� � � � � � �� � � �
� ��

mj j j m m jP P

11 1 1, ( ) , ( )[ ( ) ( )].� � �� � � � � �� �
mj j m m jP P

Hence, the set of matrices defined in (34), i.e., {M(�1, ..., �m
) : (�1, ..., �m

) � �m) is
commutative with respect to multiplication with an additional inner level of commutativity

and form a multiplicative abelian group with identity matrix I = (0, ..., 0).�����
m

M

V. Conclusion

In this article we presented a simple upper bound on the stability margin of a given a
Hurwitz polynomial, say f (s) := �n

i=0 ai
si. The proposed upper bound is �

u
 := a

n–1/n, where
a

n–1 is f (s)’s coefficient of sn–1. This upper bound coincides with the � that renders F(S) =
f (S – �) a depressed polynomial, i.e., where the coefficient of Sn–1 becomes zero. This
bound can be used to narrow the search region for the stability margin � of f (s) from (�

�
,

�) to (�
�
,��

u
), where �

�
 � 0 is an initial lower bound on the stability margin.

Next, we showed that the matrix P(�, �) that transforms the coefficients of f (s) to the
coefficients of F(S) := f (S/��– �), ��� 0 satisfies P–1(�, �) = P(–��, �–1). We defined P(�)
:= P(�, 1), and P := P(–1) and called the upper triangular matrix P Pascal’s matrix because
its nonzero elements coincide with Pascal’s triangle. We have shown the following results.
By shifting the roots of f (s) by � and then shifting the roots of F(S) by –� we arrive back
at f (s). Hence, we obtain that P(–�)P(�) = I, where I denotes the (n + 1)-square identity
matrix and consequently P–1(�) = P(–�) thus generalizing Waring’s formulas, i.e., P–1 =
P(1). Similarly, we derived other matrix identities where multiplication is commutative.
We could thus show that the set of matrices {P(�) : ��� �} form a multiplicative abelian
group with identity matrix P(0). We have also shown that P(�, �) = D(�)P(�), where D(�)
is a diagonal matrix whose elements are D

ii
(�) = �–i, i = 0, 1, ..., n. Therefore, P–1(�, �) =

P(�)–1 D–1(�) = P(–�)D(�–1). Finally, we extended the above results to multivariable
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polynomials with similar conclusions and with richer structure. Further research will focus
on finding other operations on polynomials that can be translated to matrix operations and
eventually to fast algorithms. For some more examples of this line of research refer to
(Hertz, 1991), (Hertz, 2021), and (Hertz, 2022).
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